
Software Testing

Hans-Petter Halvorsen, M.Sc.

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents
System Documentation

Software Test Plan (STP)

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e

Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)

Pr
oj

ec
t M

an
ag

em
en

t (
G

an
tt

 C
ha

rt
, e

tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan

(SDP)

2.Requierements
/Design

Main purpose of Testing: Find Bugs!!

• Requirements Errors: 13%
• Design Errors: 24%
• Code Errors: 38%
• Documentation Errors: 13%
• Bad-fix Errors: 12%

http://proquest.safaribooksonline.com/book/software-engineering-and-
development/9781449691998/chapter-3-engineering-of-software/42?uicode=telemark

http://proquest.safaribooksonline.com/book/software-engineering-and-development/9781449691998/chapter-3-engineering-of-software/42?uicode=telemark

Why Find Bugs early?

Requirements

Design

Implementation

Testin
g

Deployment
Software Development Life Cycle (SDLC)

Cost per defect/Bug

The First Bug ever

They found a bug (actually a moth) inside a computer in 1947 that made the program not
behaving as expected. This was the “first” real bug.

What is Bugs?

• A software bug is an error, flaw, failure, or fault in a
computer program or system that produces an
incorrect or unexpected result, or causes it to behave in
unintended ways

• They found a bug (actually a moth) inside a computer in
1947 that made the program not behaving as expected.
This was the “first” real bug.

• Debugging: Find and Remove/Fix Bugs

“If you don’t know how your code works, it does
not work
– you just don’t know it yet”

Software Testing

“50% of the software development is
about testing your software”

Different Systems Needs Different Testing
1 2

3 4

7 Principles of Testing
1. Testing shows the presence of Bugs: Software Testing reduces the probability of

undiscovered defects remaining in the software but even if no defects are found, it
is not a proof of correctness.

2. Exhaustive Testing is impossible: Testing everything is impossible! Instead we need
optimal amount of testing based on the risk assessment of the application.

3. Early Testing: Testing should start as early as possible in the Software Development
Life Cycle (SDLC)

4. Defect Clustering: A small number of modules contain most of the defects/bugs
detected.

5. The Pesticide Paradox: If the same tests are repeated over and over again,
eventually the same test cases will no longer find new bugs

6. Testing is Context dependent: This means that the way you test a e-commerce site
will be different from the way you test a commercial off the shelf application

7. Absence of Error is a Fallacy: Finding and fixing defects does not help if the system
build is unusable and does not fulfill the users needs & requirements

http://www.guru99.com/software-testing-seven-principles.html

http://www.testingexcellence.com/seven-principles-of-software-testing

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

Different Types of
Testing

Hans-Petter Halvorsen, M.Sc.

Types of Testing

Stress Testing

Usability
Testing

Performance
Testing

User Testing

Regression
Testing

Setyp &
Deployment Testing

...

...
...

Requirements
Testing

GUI Testing

Functional
Testing

Non Functional
Testing ...

...

...Load Testing

Usability
Testing

Security Testing

Who does the Testing?
• Programmers/Developers

– Programmers usually create test cases and run them as they write the code to
convince themselves that the program works. This programmer activity related to
testing is usually considered to be unit testing.

• Testers
– A tester is a technical person whose role for the particular item being tested is just to write test

cases and ensure their execution. Although programming knowledge is extremely useful for
testers, testing is a different activity with different intellectual requirements. Not all good
programmers will be good testers.

• End Users/Customers
– It is a good idea to involve users in testing, in order to detect usability problems and

to expose the software to a broad range of inputs in real-world scenarios.

Test Categories
Black-box vs. White-box Testing

White-box Testing: You need to have
knowledge of how (Design and
Implementation) the system is built

Black-box Testing: You need no
knowledge of how the system is created.

Grey-box Testing

Typically done by Developers, etc

Levels of Testing

Unit Testing

Integration Testing

System Testing

Acceptance Testing

Any module, program, object separately
testable

Interface between components; interactions
with other systems (OS, HW, etc)

The behavior of the whole product(system) as
defined by the scope of the project

Is the responsibility of the customer – in general. The goal
is to gain confidence in the system; especially in its non-
functional characteristics

Levels of Testing
Unit Testing: Test each parts
independently and isolated

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.
Interaction with other systems
(Hardware, OS, etc.)

System Testing: Test the whole system

Regression Testing: Test
that it still works after a
change in the code

Levels of Testing

Unit Testing

Regression Testing

Integration Testing

System/Validation

Testing

Acceptance Testing

Start

Finish

Requirements & Design

Start Development

Unit Tests are written by the Developers as part of the

Programming. Each part is developed and Unit tested

separately (Every Class and Method in the code)

The Customer needs to test and approve the software

before he can take it into use. FAT/SAT.

System testing is typically Black-box Tests that validate

the entire system against its requirements, i.e Checking

that a software system meets the specifications

Integration testing means the system is put together

and tested to make sure everything works together.

Regression testing is testing the system to check that

changes have not “broken” previously working code.

Both Manually & Automatically (Re-run Unit Tests)

Testing Overview
Test Categories: Test Levels: Test Methods:

Unit Testing

Regression Testing

Integration Testing

System Testing

Acceptance Testing

Black-box Testing

White-box Testing

Stress Testing

Performance
Testing

GUI Testing

Functional
Testing

Non Functional
Testing

Load Testing

Usability
Testing

Security Testing

etc.

Software Test Plan
(STP)

Hans-Petter Halvorsen, M.Sc.

Test Planning
• To maximize the effectiveness of resources

spent on testing, a systematic approach is
required

• A Software Test Plan (STP) should be created

Test Documentation

21

Planning Tests Perform Tests Document
Test Results

Software Test Plan (STP)

Software Requirements Specifications (SRS)
Software Design Document (SDD)

Software Test
Documentation

(STD)

Test Logs

These documents will be the foundation for all Testing

- Functional & Non-Functional Requirements
- User & System Requirements

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e

Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
G

an
tt

 C
ha

rt
, e

tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

What is a Software Test Plan (STP)?
A Document that answers the following:
• Testing should be based on Requirements & Design Documents
• What shall we test?
• How shall we test?
• Hardware/Software Requirements
• Where shall we test?
• Who shall test?
• How often shall we test (Test Schedule)?
• How shall tests be documented?

§ It is not enough simply to run tests; the results of the tests must be systematically recorded. It must be
possible to audit the testing process to check that it has been carried out correctly

§ System tests: This section, which may be completely separate from the test plan, defines
the test cases that should be applied to the system. These tests are derived from the
system requirements specification. http://www.softwareengineering-9.com/Web/Testing/Planning.html

http://www.softwareengineering-9.com/Web/Testing/Planning.html

These things need to be specified in the STP

Test Plan Example
A. Goals and Exit Criteria (Quality, Robustness, Schedule, Performance Goals

of the Product, ...)

B. Items to be Tested/Inspected (Executables such as modules and
components, Nonexecutables such as Requirments and Design
specifications, ...)

C. Test Process/Methodologies (Unit, Functional, Acceptance, Regression
Tests, Black-box, White-box, Test metrics, Bug report process, ...)

D. Resources (People, Tools, Test Environment, ...)

E. Schedule (Test-case development, Test execution, Problem reporting and
fixing, ...)

F. Risks (...)

G. Major Test Scenarios and Test Cases (...)
Essentials of Software Engineering, Frank Tsui; Orlando Karam; Barbara Bernal, 3 ed., Jones & Bartlett Learning

Appendix D in Essentials of Software Engineering

How to make a Test Plan

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

http://www.guru99.com/what-everybody-ought-to-know-about-test-planing.html

Test Cases List Example
Tester: _______________________ , Date: ________

Test Case OK Failed Description
The Login Procedure works

User Data Saved in the Database

etc

The Testers fill in these Lists electronically. Should be included in Software Test Documentation

If Test Cases Fails, report Bugs in VSO

Test Planning Summary
• Test planning involves scheduling and estimating the system testing process,

establishing process standards and describing the tests that should be carried out.
• As well as helping managers allocate resources and estimate testing schedules, test

plans are intended for software engineers involved in designing and carrying out system
tests.

• They help technical staff get an overall picture of the system tests and place their own
work in this context.

• As well as setting out the testing schedule and procedures, the test plan defines the
hardware and software resources that are required.

• Test plans are not a static documents but evolve during the development process. Test
plans change because of delays at other stages in the development process.

• Test planning is particularly important in large software system development.
• For small and medium-sized systems, a less formal test plan may be used, but there is

still a need for a formal document to support the planning of the testing process.
http://www.softwareengineering-9.com/Web/Testing/Planning.html

http://www.softwareengineering-9.com/Web/Testing/Planning.html

Test Environment

Hans-Petter Halvorsen, M.Sc.

Why Do We Need a Test
Environment?

Why cant we just use our own PC?

Why Test Environment?
• “It works on my PC” says the Developer

• Clean Environment

• On the Developers PCs we have all kind of Software installed that
the Customer dont have, e.g. Development Tools like Visual
Studio, etc.

• We need to test on different Platforms and Operating Systems

• Customers may use different Web Browsers

• Deployment: Test of Installation packages

• Make the software available for Testers

• etc.

“It works on my Computer”

Make sure to test your software on other Computers and
Environments than your Development Computer!
• Everything works on the Developer Computer
• The Customers Database is not the same as yours
• The Customer may not use the same OS
• The Customer may not use the same Web Browser
• The Customer do not have Visual Studio, SQL Server, etc. on their

Personal Computer
• Etc.
=> Test Environment is needed!

Development Testing Production

Development
Environment Test Environment

Production
Environment

Typically the Developers Personal
Computer with Database, Web
Server and Programming Software

A Clean PC/Server (or a network
with PCs and Servers) where you
install and test your Software.
Today we typically set-up a Virtual
Test Environment

The Customers environment
where you unstall the final
software (Servers and
Clients)

Programming environments such as Visual
Studio, etc. should not be installed in this
environment. You need to create .exe files
etc. in order to make your software run.

Developers Developers & Testers Customers
until finished

Virtualization

Operation System

Virtualization
Software

Hypervisor

VM VM VM

Hardware
(Computer)

VM VM VM

Guests

Host

VM = Virtual Machines

A Hypervisor can
run directly on the
computer without
a Host OS

Windows, Linux, ...

Windows, Linux, ...

Virtualization Software
A lot of Virtualization Software exists. Here are some examples:
• VMware Workstation
• VMware Workstation Player (Free of charge and simple to

use)
• VMware vSphere and vSphere Hypervisor
• VMware Fusion (Mac)
• Parallels Desktop (Mac)
• Microsoft Hyper-V
• VirtualBox
• etc.

VMware Workstation Player
VMware Workstation Player is for personal use on your
own PC. VMware Player is free of charge for personal
non commercial use.

36

VMware is a company that has
been specializing within
virtualization software.
http://www.vmware.com

http://www.vmware.com

When are you
finished Testing?

Hans-Petter Halvorsen, M.Sc.

Software Testing

“50% of the software development is
about testing your software”

When are we finished with Testing?

St
ar

t
Finished

Requirements
& Design

Development & Coding

Continuous Testing in the whole SDLC!

Al
ph

a

RCBe
ta

RT
M

Final
Delivery

Testing

Testing Testing Testing Testing
Increased

Focus
Increased

Focus
Increased

Focus
Increased

Focus

Agile/Scrum: Periodically Iterations/Sprint every 14-30 days

...... ...

Code
Freeze

Software without
Critical Bugs

Requirements &
Functionality

FunctionalityRequirements

You can never find all Bugs!
Released Software do have Bugs!

When to Stop Testing?
• A simple answer is to stop testing when all the

planned test cases are executed and all the
problems found are fixed.

• In reality, it may not be that simple. We are
often pressured by schedule to release
software product.

Software Finished

Time

When to Stop Development?

“90%”
“100%”

Details, small adjustments, etc.
The last 10% takes a lot of time!!!

Sooner or later you have to say enough is
enough and release version 1.0.

One must define within the development
company, development team or in dialogue
with the customer what is defined as "good
enough". Software will never be 100% complete
or error-free!

Number of Bugs

Time

When to Stop Testing?

Resources, Effort, etc. in

order to find Bugs

Critical Point

In the beginning it it easy to
find bugs with few resources

When should you stop Testing?
(depends on Time, Budget, etc.)

When to Stop Testing?

• When the tester has not been able to find another

defect in 5 (10? 30? 100?) minutes of testing

• All code reviews and walkthroughs have certified the

code as ok

• When a given checklist of test types has been

completed

• The code has passed all unit tests

• When testing runs out of its scheduled time

• ...

E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011. +++

Bug Tracking Systems

Hans-Petter Halvorsen, M.Sc.

Bug Tracking Systems
• A “bug tracking system” or “defect tracking system”

is a software application that keeps track of
reported software bugs in software development
projects.

• It may be regarded as a type of “issue tracking
system”.

• Typically bug tracking systems are integrated with
other software “project management applications”
– e.g., Visual studio Team Services, Jira, etc.

https://en.wikipedia.org/wiki/Bug_tracking_system

https://en.wikipedia.org/wiki/Bug_tracking_system

Bug Tracking Software
• Team Foundation Server/Visual Studio Team

Services
• Jira
• Bugzilla
• Clearquest
• … (hundreds)

Bug Reporting and Tracking

Bug

Tracking

System

Developer

Tester

Report

Bugs

Fix

Bugs

Check if Bugs

are Fixed

Check if Bug Fixes

are Approved

Test Manager,

Project Manager, QA Department

Assign

Responsible

Person

Go through Lists of

Not Fixed Bugs,

Fixed Bugs, etc.

Visual Studio Team Services

Hans-Petter Halvorsen, M.Sc.

Work Items Example

You can create
Queries (both
Personal and Team
Queries)

List of Work Items

Work Item Details

Work Items – New Bug

Queries
• Used to find existing Work Items
• You may create different Queries to make it easy to find

the Work Items you need
• Queries may be personal or visible for everybody in the

project (Team Queries)

51

Creating a Query - Example

Code Review
& Refactoring

Hans-Petter Halvorsen, M.Sc.

What is Refactoring?
• Even when using best practices and making a

conscious effort to produce high-quality software,
it is highly unlikely that you will consistently
produce programs that cannot be improved.

• Refactoring is
– the activity of improving your code style without altering its

behavior
– a change made to the internal structure of software to make it

easier to understand and cheaper to modify without changing
its observable behavior

Refactoring - Symptoms
• Coding Style and Name Conventions not followed
• Proper Commenting not followed
• Duplicated code (clearly a waste).
• Long method (excessively large or long methods perhaps should be subdivided

into more cohesive ones).
• Large class (same problem as long method).
• Switch statements (in object-oriented code, switch statements can in most

cases be replaced with polymorphism, making the code clearer).
• Feature envy, in which a method tends to use more of an object from a class

different to the one it belongs.
• Inappropriate intimacy, in which a class refers too much to private parts of

other classes.
=> Any of these symptoms (and more) will indicate that your code can be
improved. You can use refactoring to help you deal with these problems.

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway
www.usn.no

E-mail: hans.p.halvorsen@hit.no
Blog: http://home.hit.no/~hansha/

http://www.usn.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

